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Two new vitamin D2 analogues, (22Z)-25-(OH)-D2 and (22Z)-1a,25-(OH)2-D2, were serendipitously syn-
thesized from vitamin D2 and using the Julia–Kocienski olefination.
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The classical Julia olefination, also known as the Julia–Lythgoe
olefination, was first described in 1973 by Julia and Paris.1 Since
then a variant of this reaction, the modified or one-pot Julia olefin-
ation,2 also known as the Julia–Kocienski reaction, has emerged as
a very powerful method for olefin synthesis. The stereochemical
outcome of this reaction is generally predictable on the basis of
the substrates and reaction conditions,2c,3 although some excep-
tions have recently been reported.4

As part of our ongoing programme on the synthesis of vitamin D
and its analogues, we decided to prepare 25-hydroxyvitamin D2 (1)
and 1a,25-dihydroxy vitamin D2 (2) (Fig. 1); although considerable
effort has been devoted to the synthesis of vitamin D3 metabo-
lites,5 very few syntheses of 25-(OH)-D2 and 1a,25-(OH)2-D2 have
been reported to date.6

Our approach was based on generation of the side chain by Ju-
lia–Kocienski reaction of an appropriate aldehyde with sulfones 3,
which bear a methyl ester group offering the possibility of easy
modification at C-25 (Scheme 1).

It was anticipated that coupling of sulfones 3 with aldehyde 4
would lead stereoselectively to the formation of the E olefin. Much
to our surprise, however, despite numerous changes in reaction
conditions (cf. Table 1), only the Z olefin 5 could be isolated.

The optimized reaction conditions to synthesize Z olefin 5 were
established to be reacting aldehyde 4 with sulfone 3a (1.45 equiv)
and LiHMDS (1.36 equiv) at �78 �C.

Benzothiazole 3a was efficiently prepared from commercially
available alcohol 6 and 2-mercaptobenzothiazole (7) using Mitsun-
ll rights reserved.
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obu conditions7 followed by oxidation of intermediate 8 (Scheme
2). Coupling of 3a with aldehyde 4 gave exclusively Z olefin 5 in
75% yield.

This unexpected and unprecedented result prompted us to con-
sider the synthesis of 22Z vitamin D2 analogues. The analogue
(22Z)-25-OH-D2 was prepared as shown in Scheme 3 starting from
the Inhoffen–Lythgoe diol (9), which is easily obtained by degrada-
tion of vitamin D2.8 Protection of the hydroxyl groups of 9, fol-
lowed by selective deprotection of the primary alcohol, afforded
compound 10 in 79% overall yield; and TPAP oxidation9 of alcohol
10 then afforded aldehyde 4 in 93% yield. Julia–Kocienski olefin-
ation of 4 with sulfone 3a was best carried out in THF at �78 �C
using LiHMDS as base: under these conditions, the Z olefin 5 was
obtained in 75% yield. Reaction of 5 with methyllithium, followed
by removal of the silyl protecting group with TBAF, gave diol 11 in
78% overall yield; and TPAP oxidation of the C8 hydroxyl group,
followed by protection of the C25 hydroxyl with TMS, afforded ke-
tone 12 in 85% overall yield. Wittig–Horner coupling of ketone 12
with phosphine oxide 13,10 followed by removal of the silyl pro-
tecting group, then afforded the target vitamin D2 analogue 1411

in almost quantitative yield.
For the synthesis of (22Z)-1a,25-(OH)2-D2 (20) we decided to

start from alcohol 15 (Scheme 4), which is readily obtained in large
quantities from vitamin D2 using the procedures described by Cal-
verley12 and later modified by Choudhry.13

TPAP oxidation of 15 afforded aldehyde 16 in 95% yield, and
Julia–Kocienski olefination of 16 with sulfone 3a, gave a 65% yield
of ester 17, which upon reaction with methyllithium in ether at
�78 �C yielded alcohol 18. Removal of the silyl protecting groups
of 18 with TBAF in THF afforded a 93% yield of triol 19, and



1) (Me3Si)2NM

2)

H
TESO

O

4

3a
S

N
S O

OMe

O

O

3b

N
N

N

N
S O

OMe

O

O

Scheme

Table 1

Entry Solvent M Ph

% Yield 5

1 THF Li 35a

2 THF K 0b

3 THF Na 57a

4 DME K 4c

5 DME Na 0b

Conditions: a Aldehyde 4 (1 equiv), sulfone (1.45 equiv), base (1.36 equiv), �78 �C; b aldeh
sulfone (1.45 equiv), base (1.36 equiv), �55 �C.
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Figure 1. Structures of 25-hydroxyvitamin D2 (1) and 1a,25-dihydroxyvitamin D2

(2).
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photoisomerization of 19 using anthracene as sensitizer finally
gave the target analogue 2014 in 85% yield.

In conclusion, we have synthesized two new vitamin D2 ana-
logues, (22Z)-25-OH-D2 (14) and (22Z)-1a,25-(OH)2-D2 (20), using
a Julia–Kocienski olefination with an unexpected stereoselectivity.
Compound 14 was synthesized from the Inhoffen–Lythgoe diol (9)
in 10 steps and 33% overall yield, and compound 20 from readily
accessible alcohol 15 in five steps and 41% overall yield. We are
currently using our method to synthesize new vitamin D2 ana-
logues with modifications at C-25 for biological evaluation and
SAR studies. Small samples of these new vitamin D2 analogues
(14 and 20) are available upon request for biological evaluation.
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Scheme 4. Reagents and conditions: (i) TPAP, NMO, CH2Cl2, molecular sieves (95%); (ii) 3a, LiHMDS, THF, �78 �C (65%); (iii) MeLi, Et2O,�78 �C (85%); (iv) TBAF, THF (93%); (v)
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Scheme 3. Reagents and conditions: (i) (a) TESCl, imid, CH2Cl2, 0 �C (80%); (b) TBAF, THF (99%); (ii) TPAP, NMO, CH2Cl2 (93%); (iii) 3a, LiHMDS, THF, �78 �C (75%); (iv) (a)
MeLi, Et2O, �78 �C (79%); (b) TBAF, THF (99%); (v) (a) TPAP, NMO, CH2Cl2 (98%); (b) TMS-imidazole (87%); (vi) (a) 13, n-BuLi, THF, �78 �C (90%); (b) TBAF, THF (99%).
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